Journal of Organometallic Chemistry, 390 (1990) 371-378 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20796

Carbene derivatives of areneruthenium(II) complexes in one step from terminal alkynes

Dominique Devanne and Pierre H. Dixneuf

Laboratoire de Chimie de Coordination Organique, URA CNRS D0415, Campus de Beaulieu, Université de Rennes, 35042 Rennes (France)

(Received January 22nd, 1990)

Abstract

The complexes $[(\eta^{6}\text{-arene})Ru=C(OMe)CH_2R')Cl(PR_3)]PF_6^{-}$ (R' = Ph; arene = $Me_4C_6H_2$, ${}^{i}Pr_3C_6H_3$, $Et_3C_6H_3$; PR₃ = PMe₃, PPh₃, P(OMe)₃) have been made from RuCl₂(PR₃)(arene) precursors by activation at room temperature of phenyl-acetylene in methanol containing NaPF₆. The complex with R' = ⁿBu, arene = $Me_4C_6H_2$, and PR₃ = PMe₃ is similarly formed from hex-1-yne but much more slowly, and a complex of the type $[(p-cymene)Ru=C(OMe)CH_2R')Cl(PR_3)]^+PF_6^-$ could be obtained only when the phosphine was the bulky PPh₃ (10b). It has been shown that the steric hindrance by both arene and phosphine ligands contributes to the stabilization of the carbeneruthenium complexes.

Introduction

Activation of terminal alkynes by $\operatorname{RuCl}_2(\operatorname{PR}_3)(\eta^6\text{-arene})$ complexes has been shown to provide a catalytic and regioselective synthesis of vinylcarbamates, whereas the isoelectronic complexes $\operatorname{RuCl}(\operatorname{R}_3\operatorname{P}_2(\operatorname{C}_5\operatorname{H}_5)$ are inactive [1]. A study of the stoichiometric interactions of terminal alkynes with $\operatorname{RuCl}_2(\operatorname{PR}_3)(\eta^6\text{-}\operatorname{C}_6\operatorname{Me}_6)$, one of the most efficient catalyst precursors, led to the discovery of a direct route to the first arene-ruthenium-carbene complexes $[(\operatorname{C}_6\operatorname{Me}_6)\operatorname{Ru}(=\operatorname{C}(\operatorname{OR})\operatorname{CH}_2\operatorname{R}')\operatorname{Cl}(\operatorname{PMe}_3)]^+\operatorname{PF}_6^-$ [2,3]. (The only earlier such species was $[(\operatorname{C}_6\operatorname{Me}_6)\operatorname{Ru}(=\operatorname{CH}_2)(\operatorname{Me})(\operatorname{PMe}_3)]^+$, which was suggested to be formed as an intermediate by hydride elimination from $(\operatorname{C}_6\operatorname{Me}_6)\operatorname{RuMe}_2(\operatorname{PMe}_3)$ [4].) The formation of carbeneruthenium complexes has been shown to proceed via the vinylidene intermediates $[(\operatorname{C}_6\operatorname{Me}_6)\operatorname{Ru}(=\operatorname{C}+\operatorname{CHR})\operatorname{Cl}(\operatorname{PMe}_3)]^+$, which are much more easily produced and much more reactive toward nucleophiles such as alcohols [5] than the isoelectronic cations $[(\operatorname{C}_5\operatorname{H}_5)(\operatorname{R}_3\operatorname{P}_2\operatorname{Ru}]^+=\operatorname{C}=\operatorname{CHR}[6,7].$

The corresponding carbeneruthenium complexes could not be isolated from the reaction of the related (p-cymene)RuCl₂(PMe₃) precursor, and it was thought that

this could be due to the lower stability of the Ru-(η^6 -p-cymene) than of the Ru-(η^6 -C₆Me₆) bond. This is not, in fact, the main reason, since we now report that (i) the isolation of new arene-ruthenium-carbene complexes [(arene)Ru(=C(OMe)-CH₂R')Cl(PR₃)]⁺PF₆⁻ which do not contain the stable hexamethylbenzene-ruthenium bond but instead a variety of other arene along with other phosphine ligands, and (ii) the stability of the complexes markedly depends on the steric influence of the ligands rather than on the electron donating ability of the {(arene)(PR₃)ClRu} moiety.

Results and discussion

The RuCl₂(PMe₃)(arene) complexes 1a (1,2,4,5-Me₄C₆H₂), 2a (1,3,5-¹Pr₃C₆H₃) and 3a (1,3,5-Et₃C₆H₃) were treated with a slight excess (1.5 equivalent) of phenyl-acetylene in the presence of one equivalent of NaPF₆, in a methanol/dichloromethane (1/1) mixture. After 45 to 60 min stirring at room temperature the orange carbeneruthenium complexes 6a (75%), 7a (65%) and 8a (73%) respectively, were isolated (Scheme 1).

Scheme 1

The complexes **6a-8a** show in ¹³C{¹H} NMR a typical low field doublet for the carbene carbon nucleus [5] (δ ppm (²J(PC)): **6a**: 392.92 (20.6 Hz); **7a**: 325.76 (19.5 Hz); **8a**: 324.80 (20.6 Hz)). Evidence that the ruthenium centre is chiral is provided by the ¹H NMR spectrum, which shows the non-equivalence of the Ru=C(OMe)-CH₂ methylene protons (δ ppm (²J(AB)): **6a**: 5.28-4.29 (11.8 Hz); **7a**: 5.32-4.88 (14.2 Hz); **8a**: 5.17-4.39 (12.4 Hz)) and the non-equivalence of the arene-methyl groups in **6a** and the isopropyl-methyl groups in **7a**.

The RuCl₂(PR₃)(1,2,4,5-Me₄C₆H₂) complexes **1b** (PR₃ = PPh₃) and **1c** (PR₃ = P(OMe)₃) reacted with phenylacetylene under similar conditions to give the corresponding carbene complexes **6b** (70%) and **6c** (72%) after 1 and 4 h, respectively ($^{13}C{^{1}H}$ NMR, δ ppm ($^{2}J(PC)$); **6b**: 323.60 (18.65 Hz); **6c**: 323.15 (26.70 Hz)). Comparison of the reactivities of complexes **1** shows that the presence of the less electron-releasing phosphite ligand significantly lowers the reaction rate but does not the stability of the carbene complex.

The complex $\operatorname{RuCl}_2(\operatorname{CO})(1,2,4,5-\operatorname{Me}_4C_6H_2)$ 1d was recovered unchanged after 24 h in contact with phenylacetylene and no formation of the corresponding carbene complex was observed. Complex 1a reacted with an excess of hex-1-yne in a (1/1) MeOH/CH₂Cl₂ mixture in the presence of NaPF₆, but complex 9a was formed very slowly; after 20 h of reaction at 25°C it was isolated in 82% yield (δ ppm Ru=C: 330.26 (²J(PC) 20.36 Hz)).

The formation of carbeneruthenium complexes 6-9 can result from the initial dissociation of one Ru-Cl bond of Ru-Cl₂(L)(arene) precursors in polar solvent, η^2 -coordination of the alkyne, rearrangement to η^1 -vinylidene complex, and addition of methanol to the electrophilic carbon of the heteroallene moiety (Ru=C=CHR) (eq. 1). The dissociation step is favored by basic phosphines capable of stabilizing the 16 electron cationic intermediate. Thus the rate was markedly lower for a complex containing the weak electron donating L = P(OMe)₃ in place of the basic PMe₃ or even the bulky PPh₃ ligand, and no reaction was observed for L = CO. The low rate observed for hex-1-yne is probably due to the fact that this alkyne is less acidic than phenylacetylene. Theoretical studies have indicated that a decrease in the acidity of the terminal alkyne should disfavor the η^2 -alkyne-metal to η^1 -vinylidene-metal rearrangement [8].

$$\{ \operatorname{Ru}-\operatorname{Cl} \xrightarrow{\operatorname{H}-\operatorname{C}\equiv\operatorname{C}-\operatorname{R}}_{\operatorname{Cl}^{-}} \{ \operatorname{Ru}^{+} \leftarrow \bigcup_{\operatorname{CR}}^{\operatorname{CH}} \longrightarrow \{ \operatorname{Ru}^{+}=\operatorname{C}=\operatorname{CHR} \xrightarrow{\operatorname{MeOH}}_{\operatorname{CH}_{2}\operatorname{R}} (1)$$

It is noteworthy that these reactions occur under very mild conditions, whereas the isoelectronic carbeneruthenium complexes $(C_5H_5)(Ph_3P)_2Ru^+=C(OMe)CH_2R$ were isolated only after a 24 h reflux of a solution of $RuCl(Ph_3P)_2(C_5H_5)$ and phenylacetylene in methanol [6,9].

The precursors $\operatorname{RuCl}_2(\operatorname{PMe}_3)(\operatorname{arene})$ 4a (1,3,5-Me₃C₆H₃) and 5a (*p*-Me-C₆H₄-¹Pr), analogues of complexes 1a-3a, were also treated with phenylacetylene. Although a reaction occurred no stable product could be isolated even at -10° C. From 5a an unstable product was isolated at -10° C, but could not be char-

Complex		$E_{1/2}$ (V _{SCE})	Complex		$E_{1/2} (V_{SCE})$
1a	$Me_4C_6H_2/PMe_3$	0.89	2.8	ⁱ Pr ₃ C ₆ H ₃ /PMe ₃	0.96
1b	$Me_4C_6H_2/PPh_3$	1.02	3a	$Et_3C_6H_3/PMe_3$	0.92
lc	$Me_4C_6H_2/P(OMe)_3$	1.00	4a	Me ₃ C ₆ H ₃ /PMe ₃	0.94
ld	Me ₄ C ₆ H ₂ /CO	$1.49(E_{na})$	5a	MeC, H, Pr/PMe,	0.98
		P	5b	MeC ₆ H ₄ ⁱ Pr/PPh ₃	1.09

Cyclic voltammetry of RuCl₂(L)arene complexes in acetonitrile containing Bu₄NPF₆ (0.1 M) at 0.2 V s⁻¹

acterized; however its IR and ¹H NMR spectra are consistent with the compound $Ru(C(OMe)CH_2Ph)(Cl)(PMe_3)(MeC_6H_4^{-1}Pr)^+PF_6^-$ (11a).

Electronic and steric effects of the ancillary arene and phosphine ligands could be evoked to account for the instability of the carbene derivatives of 4a and 5a with respect to complexes 6–9. A cyclic voltammetry study of the precursors $RuCl_2(PR_3)(arene)$ was thus undertaken (Table 1), and showed that the oxidation of all complexes containing a PR_3 group is quasi reversible, occurs at a potential of 0.89 to 1.09 V(SCE), and corresponds to a Ru^{II}/Ru^{III} redox system [5]. The oxidation potentials of 4a and 5a, which do not afford stable complexes, are quite similar to those of 1a and 2a. Assuming that the sequence of electron-releasing ability of the [(arene)(PR_3)CIRu]⁺ moieties correlates with that of the [(arene)(PR_3)CIRu]–Cl complexes, the values of the potentials indicate that the stability of the [(arene)(PR_3)CIRu]⁺-carbene complexes cannot be controlled by the electronic influence of the ligands.

Since complexes 4a and 5a are the least sterically hindered in the series, it is likely that the stability of the carbene derivatives depends on the steric hindrance of the ligands. To check this hypothesis, the complex 5b, which is less easily oxidized than 5a but contains a phosphine bulkier than PMe₃, was treated with an excess of phenylacetylene. A stable carbeneruthenium complex 10b (59%) was isolated after 45 min at room temperature. Its ¹H NMR spectrum revealed the non-equivalence of the isopropyl methyl groups (δ ppm (Me₂CH-): 1.03 and 1.04 (³J(HH) 7.0 Hz)) and a low field doublet in ¹³C{¹H} NMR (δ ppm Ru=C: 325.4 (²J(PC) 21.2 Hz)) characteristic of the carbene carbon nucleus coupled with a ³¹P nucleus.

The above results show that although the formation of the carbene ruthenium arene complexes requires the presence of an electron-donating PR_3 group on the metal centre, their stabilities are largely controlled by the steric hindrance of both the arene and phosphine ligands.

Experimental

General data

The complexes $\operatorname{RuCl}_2(\operatorname{PR}_3)(\operatorname{arene})$ and $\operatorname{RuCl}_2(\operatorname{CO})(\operatorname{arene})$ were prepared from the corresponding $[\operatorname{RuCl}_2(\operatorname{arene})]_2$ complexes by the procedures previously described for the preparation of $\operatorname{RuCl}_2(\operatorname{PR}_3)(\operatorname{arene})$ [10,13] and $\operatorname{RuCl}_2(\operatorname{CO})(\operatorname{C}_6\operatorname{H}_6)$ [14]. All solvents were dried by standard methods, and all manipulations were conducted under nitrogen by standard Schlenk techniques. Elemental analyses were performed by the CNRS analysis laboratory, Villeurbanne (France). NMR spectra

Table 1

were recorded at the CRMPO Center of the University of Rennes on a Bruker WP80DF operating at 80 MHz for ¹H and at 32.38 MHz for ³¹P nuclei, and on a Bruker AMWB300 operating at 300.134 MHz for ¹H and at 75.469 MHz for ¹³C nuclei. ³¹P chemical shifts are relative to external H_3PO_4 (85%).

Cyclic voltammetry

Conventional electrochemical equipment was used for cyclic voltammetry: EGG PAR Model 362 scanning potentiostat with an X-Y recorder BD90. The working electrode was a stationary platinum disc electrode of 1 mm of diameter. The auxiliary electrode was also a platinum electrode and the reference electrode was an aqueous saturated calomel electrode (SCE). In a typical experiment, 4.10^{-5} mol of complex was dissolved under an argon atmosphere in 15 ml of distilled and deoxygenated acetonitrile containing 0.4 g of pure NBu₄PF₆ (0.1 M) as electrolyte.

Synthesis of complexes $Ru = C(OR)CH_2R'(Cl)(PR_3)(arene) + PF_6^{-1}$

General procedure

To a mixture of 1 mmol of complex $RuCl_2(PR_3)$ (arene) and 1 mmol of NaPF₆ (0.168 g). Under argon atmosphere in a Schlenk tube were successively added 10 ml of dichloromethane, 10 ml of dry methanol and 1.5 mmol of alkyne. The red solution was stirred at room temperature for 45–60 min, during which it progressively turned orange. The volume of solvents was reduced to one-third by evaporation under vacuum, and this led to precipitation of the carbene complex, which was completed by addition of 10 ml of ether. The orange solid was filtered off on a frit and dissolved in 10 ml of dichloromethane. The solution was freed from NaCl by filtration through a frit and the recovered yellow-orange complex was recrystallized from a dichloromethane/ether (1/5) mixture.

Complex $[Ru(=C(OMe)CH_2Ph)Cl(PMe_3)(1,2,4,5-Me_4C_6H_2)]PF_6$ (6a)

6a was obtained from 0.382 g (1 mmol) of complex **1a** as orange crystals in 75% yield (0.47 g). ¹H NMR (300.134 MHz, CD₂Cl₂, 309 K) δ ppm: 7.43 (m, 5H, Ph), 5.36 (s, 2H, C₆H₂Me₄), 5.28–4.29 (AB, 2H, CH₂Ph, ²J(HH) 11.8 Hz), 4.71 (s, 3H, O-CH₃), 1.93 (s, 6H, C₆H₂Me₂), 1.71 (s, 6H, C₆H₂Me₂), 1.50 (d, 9H, PMe₃, ²J(PH) 10.9 Hz). ¹³C{¹H} NMR (75.469 MHz, CD₂Cl₂, 309 K) δ ppm: 326.92 (d, Ru=C, ²J(PC) 20.6 Hz), 131.9, 131.4, 129.6, 128.6 (s, C₆H₅), 108.4, 107.9, 99.4 (s, C₆Me₄H₂), 67.78 (s, Me-O), 55.1 (s, CH₂), 17.2 (d, PMe₃, ¹J(PC) 41.3 Hz), 17.0, 16.2 (s, C₆H₂Me₄). ³¹P{¹H} NMR (32.80 MHz, CD₂Cl₂, 309 K) δ ppm: 10.71 (s, PMe₃), -144.41 (sept., PF₆⁻). IR (KBr) ν cm⁻¹: 1290 (C-O), 970 (PMe₃), 860 (P-F). Anal. Found: C, 42.09; H, 5.04; P, 10.13. C₂₂H₃₃ClF₆OP₂Ru calcd.: C, 42.20; H, 5.27; P, 9.92%.

Complex $[Ru(=C(OMe)CH_2Ph)Cl(PMe_3)(1,3,5^{-i}Pr_3C_6H_3)]PF_6$ (7a)

7a was obtained from 0.452 g (1 mmol) of complex 2a as orange crystals in 65% yield (0.45 g). ¹H NMR (300.134 MHz, CD₂Cl₂, 309 K) δ ppm: 7.33 (m, 5H, Ph), 5.60 (s, 3H, C₆H₃ⁱPr₃), 5.32–4.88 (AB, 2H, CH₂Ph, ²J(HH) 14.2 Hz), 4.47 (s, 3H, Me-O), 2.78 (sept., CHMe₂, ³J(HH) 6.80 Hz), 1.55 (d, 9H, PMe₃, ²J(PH) 10.8 Hz), 1.25 (d, 9H, CHMe₂, ³J(HH) 6.8 Hz), 1.21 (d, 9H, CHMe₂, ³J(HH) 6.8 Hz). ¹³C{¹H} NMR (75.469 MHz, CD₂Cl₂, 309 K) δ ppm: 325.76 (d, Ru=C, ²J(PC) 19.5

Hz); 132.5, 130.3, 129.2, 127.8 (s, C_6H_5); 121.4, 91.3 (s, $C_6H_3^{i}Pr_3$), 68.7 (s, *Me*-O), 59.3 (s, CH₂), 34.3 (s, CHMe₂); 23.9, 21.1 (s, CH*Me*₂), 17.6 (d, PMe₃, ¹*J*(PC) 36.20 Hz). ³¹P{¹H} NMR (32.80 MHz, CD₂Cl₂, 309 K) δ ppm: 9.88 (s, PMe₃), -144.409 (sept., PF₆⁻). IR (KBr) ν cm⁻¹: 1290 (C-O), 975 (PMe₃), 870 (P-F). Anal. Found: C, 49.61; H, 5.69; P, 8.60. C₃₀H₄₀ClF₆OP₂Ru calcd.: C, 49.41; H, 5.49; P, 8.51%.

Complex $[Ru(=C(OMe)CH_2Ph)Cl(PMe_3)(1,3,5-Et_3C_6H_3)]PF_6$ (8a)

8a was obtained from 0.410 g of **3a** as orange crystals in 73% yield (0.47 g). ¹H NMR (300.134 MHz, CD_2Cl_2 , 309 K) δ ppm: 7.40 (m, 5H, Ph), 5.17–4.39 (AB, 2H, CH_2Ph , ²J(HH) 12.4 Hz), 5.09 (s, 3H, $C_6Et_3H_3$), 4.66 (s, 3H, Me–O), 2.26 (q, 6H, CH_2Me , ³J(HH) 6.2 Hz), 1.51 (d, 9H, PMe₃, ²J(PH) 10.8 Hz), 1.15 (t, 9H, CH_2CH_3 , ³J(HH) 6.2 Hz). ¹³C{¹H} NMR 975.469 MHz, CD_2Cl_2 , 309 K) δ ppm: 324.80 (d, Ru=C, ²J(PC) 20.6 Hz), 132.3, 131.2, 129.6, 128.52 (s, C_6H_5), 122.9, 89.6 (s, $C_6Et_3H_3$), 68.2 (s, Me–O), 56.6 (s, CH_2Ph), 27.7 (s, CH_2 –Me), 17.7 (d, PMe₃, ¹J(PC) 35.6 Hz), 15.3 (s, CH_2 –Me). ³¹P{¹H} NMR (32.80 MHz, CD_2Cl_2 , 309 K) δ ppm: 8.22 (s, PMe₃), -144.41 (sept., PF_6^-). IR (KBr) ν cm⁻¹: 1290 (C–O), 965 (PMe₃), 860 (P–F). Anal. Found: C, 43.84; H, 5.49; P, 9.33. $C_{24}H_{37}ClF_6OP_2Ru$ calcd.: C, 44.07; H, 5.41; P, 9.48%.

Complex $[Ru(=C(OMe)CH_2Ph)Cl(PPh_3)(1,2,4,5-Me_4C_6H_2)]PF_6$ (6b)

6b was obtained from 0.57 g (1 mmol) of complex **1b** as orange crystals in 70% yield (0.57 g). ¹H NMR (300.134 MHz, CDCl₃, 309 K) δ ppm: 7.45 (s, 15H, PPh₃), 7.36 (s, 5H, *Ph*-CH₂), 5.29-3.28 (AB, 2H, CH₂Ph, ²J(HH) 12.2 Hz), 4.94 (s, 2H, C₆H₂Me₄), 4.33 (s, 3H, *Me*-O), 1.75 (s, 6H, C₆H₂Me₂), 1.64 (s, 6H, C₆H₂Me₂). ¹³C{¹H} NMR (75.469 MHz, CDCl₃, 309 K) δ ppm: 323.6 (d, Ru=C, ²J(PC) 18.6 Hz), 134.3, 132.1, 131.3 (s, PPh₃), 129.1 (s, CH₂Ph), 111.9, 108.5, 100.8 (s, C₆H₂Me₄), 68.0 (s, *Me*-O), 51.7 (s, CH₂), 17.3, 16.5 (s, C₆H₂Me₄). ³¹P{¹H} NMR 932.80 MHz, CDCl₃, 309 K) δ ppm: 35.04 (s, PPh₃), -144.3 (sept., PF₆⁻). IR (KBr) ν cm⁻¹: 1290 (C-O), 850 (P-F). Anal. Found: C, 53.88; H, 4.85; P, 7.82. C₃₇H₃₉ClF₆OP₂Ru calcd.: C, 54.03; H, 4.87; P, 7.75%.

Complex $[Ru(=C(OMe)CH_2Ph)Cl(P(OMe)_3)(1,2,4,5-Me_4C_6H_2)]PF_6$ (6c)

6c was obtained from 0.43 g (1 mmol) of complex 1c, but after 4 h of reaction, as orange-yellow crystals in 72% yield (0.48 g). ¹H NMR (300.134 MHz, CD_2Cl_2 , 309 K) δ ppm: 7.35 (m, 5H, Ph), 5.56 (s, 2H, $C_6H_2Me_4$), 5.23–4.30 (AB, 2H, CH_2Ph , ²J(HH) 13.6 Hz), 4.62 (s, 3H, Me–O), 3.73 (d, 9H, P(OMe)₃, ³J(PH) 11.4 Hz), 1.98 (s, 6H, $C_6H_2Me_2$), 1.92 (s, 6H, $C_6H_2Me_2$). ¹³C {¹H} NMR (75.469 MHz, CD_2Cl_2 , 309 K) δ ppm: 323.15 (d, Ru=C, ²J(PC) 26.7 Hz), 133.2, 130.5, 129.5, 128.0 (s, C₆H₅), 111.1, 109.9, 92.1 (s, C₆Me_4H₂), 68.9 (s, Me–O), 59.3 (d, P(OMe)₃, ²J(PC) 8.2 Hz), 17.9, 17.3 (s, C₆Me_4H₂). ³¹P{¹H} NMR (32.80 MHz, CD₂Cl₂, 309 K) δ ppm: 124.14 (s, P(OMe)₃), -145.11 (sept., PF₆⁻). IR (KBr) ν cm⁻¹: 1280 (C–O), 860 (P–F). Anal. Found: C, 39.49; H, 4.84; P, 9.33. C₂₂H₃₃ClF₆O₄P₂Ru calcd.: C, 39.29; H, 4.90; P, 9.21%.

$Complex [Ru(=C(OMe)CH_2(CH_2)_3CH_3)Cl(PMe_3)(C_6H_2Me_4)]PF_6 (9a)$

9a was obtained from 0.38 g (1 mmol) of complex **1a**, but after 20 h of reaction, as orange crystals in 82% yield (0.50 g). ¹H NMR (300.134 MHz, CD_2Cl_2 , 309 K) δ ppm: 5.74 (s, 2H, $C_6H_2Me_4$), 4.51 (s, 3H, Me-O), 3.77-3.08 (tq, 2H, CH_2 -(CH_2)₃,

²*J*(HH) 4.09 Hz, ³*J*(HH) 11.4 Hz), 2.01 (s, 6H, C₆H₂*Me*₂), 1.96 (s, 6H, C₆H₂*Me*₂), 1.68 (m, 6H, (CH₂)₃), 1.44 (d, 9H, PMe₃, ²*J*(PH) 10.9 Hz), 0.91 (t, 3H, (CH₂)₃–*Me*, ³*J*(HH) 7.0 Hz). ¹³C{¹H} NMR (75.469 MHz, CD₂Cl₂ 309 K) δ ppm: 330.26 (d, Ru=C, ²*J*(PC) 20.36 Hz), 109.1, 98.6, 107.6 (s, $C_6Me_4H_2$), 66.3 (s, *Me*–O), 51.9 (s, *C*H₂–C=Ru), 32.2, 25.3, 22.5 (s, (CH₂)₃), 17.5, 17.3 (s, C₆*Me*₄H₂), 17.0 (d, PMe₃, ¹*J*(PC) 38.3 Hz), 14.0 (s, *Me*–(CH₂)₃). ³¹P{¹H} NMR (32.80 MHz, CD₂Cl₂, 309 K) δ ppm: 12.75 (s, PMe₃, -144.4 (sept., PF₆⁻). IR (KBr) ν cm⁻¹: 1290 (C–O), 980 (PMe₃), 860 (P–F). Anal. Found: C, 39.69; H, 6.12; P, 10.11. C₂₀H₃₇ClF₆OP₂Ru calcd.: C, 39.64; H, 6.15; P, 10.22%.

Complex $[Ru(=C(OMe)CH_2Ph)Cl(PPh_3)(p-Me-C_6H_4^{\dagger}Pr)]PF_6$ (10b)

10b was obtained from 0.57 g (1 mmol) of complex **5b** [12] as orange crystals in 59% yield (0.48 g). ¹H NMR (300.134 MHz, CDCl₃, 309 K) δ ppm: 7.73 (s, 15H, PPh₃), 7.46 (s, 5H, Ph-CH₂), 5.34-3.84 (AB, 2H, CH₂Ph, ²J(HaHb) 11.50 Hz), 5.32-4.96 (AB, 2H, C₆H₄Me(ⁱPr), ³J(HH) 6.5 Hz), 5.20-4.79 (AB, 2H, MeC₆H₄ⁱPr, ³J(HH) 6.5 Hz), 4.27 (s, 3H, Me-O), 2.58 (sept., 1H, CHMe₂, ³J(HH) 6.8 Hz), 1.77 (s, 3H, MeC₆), 1.13 (d, 3H, CHMe₂, ³J(HH) 7.0 Hz), 1.04 (s, 3H, CHMe₂, ³J(HH) 6.85 Hz). ¹³C{¹H} NM R(75.469 MHz, CDCl₃, 309 K) δ ppm: 325.4 (d, Ru=C, ²J(PC) 21.2 hz), 134.0, 133.2, 132.7 (s, PPh₃), 129.1 (s, CH₂Ph), 96.9, 94.9, 94.3 (s, MeC₆H₄ⁱPr), 67.8 (s, Me-O), 54.5 (s, CH₂), 33.7 (s, CHMe₂), 21.4 (s, MeC₆H₄ⁱPr), 17.6 (s, CHMe₂). ³¹P{¹H} NMR (32.80 MHz, CDCl₃, 309 K) δ ppm: 35.87 (s, PPh₃), -144.3 (sept., PF₆⁻). IR (KBr) ν cm⁻¹: 1290 (C-O), 850 (P-F). Anal. Found: C, 54.88; H, 4.87; P, 7.72. C₃₆H₃₉ClF₆OP₂Ru calcd.: C, 54.71; H, 4.80; P, 7.64%.

Complex $[Ru(=C(OMe)CH_2Ph)Cl(PMe_3)(p-Me-C_6H_4^{-i}Pr)]PF_6$ (11a)

11a was obtained from 0.382 g (1 mmol) of complex 5a [12] but at a temperature of -10° C-0° C as a dark-yellow powder 0.30 g (48% yield). ¹H NMR (80 MHz, CD₂Cl₂, 309 K) δ ppm: 7.20 (s, 5H, Ph), 5.38 (m, 4H, *p*-Me-C₆H₄-ⁱPr), 5.10-4.15 (AB, 2H, CH₂Ph, ²J(HH) 12.0 Hz), 2.90 (m, 1H, CHMe₂), 1.52 (d, 9H, PMe₃, ²J(PH) 11.2 Hz), 1.20 (d, 3H, CHMe, ³J(HH) 8.0 Hz), 1.10 (d, 3H, CHMe, ³J(HH) 8.0 Hz). IR (KBr) ν cm⁻¹: 1290 (C-O), 985 (PMe₃), 860 (P-F). The instability of this complex did not allow elemental analysis and the recording of ³¹P or ¹³C NMR spectra.

Acknowledgement

We are grateful to Dr. H. Le Bozec for helpful discussions, to MRT for a doctorate grant to D.D., and to Johnson Matthey Chemicals Limited for a loan of ruthenium trichloride.

References

- 1 (a) R. Mahé, P.H. Dixneuf and S. Lecolier, Tetrahedron Lett., 27 (1986) 6333. (b) R. Mahé, Y. Sasaki, C. Bruneau, P.H. Dixneuf and S. Lecolier, J. Org. Chem., 54 (1989) 1518.
- 2 K. Ouzzine, H. Le Bozec and P.H. Dixneuf, J. Organomet. Chem., 317 (1986) C25.
- 3 H. Le Bozec, D. Touchard and P.H. Dixneuf, Adv. Organomet. Chem., 29 (1989) 163.
- 4 (a) H. Werner and H. Kletzin, Angew. Chem. Int. Ed. Eng., 22 (1983) 46; (b) H. Werner, H. Kletzin, A. Höhn, W. Paul and W. Knaup, J. Organomet. Chem., 306 (1986) 227.

- 5 K. Ouzzine, Thèse Université de Rennes, I, 1988; H. Le Bozec, K. Ouzzine and P.H. Dixneuf, unpublished results.
- 6 M.I. Bruce and A.G. Swincer, Aust. J. Chem., 33 (1980) 1471.
- 7 R.M. Bullock, J. Chem. Soc., Chem. Commun., (1989) 165.
- 8 J. Sylvestre and R. Hoffmann, Helv. Chim. Acta, 68 (1985) 1461.
- 9 M.I. Bruce and A.G. Swincer, Adv. Organomet. Chem., 22 (1983) 59.
- 10 R.A. Zelonka and M.C. Baird, Can. J. Chem., 50 (1972) 3063.
- 11 M.A. Bennett and K.A. Smith, J. Chem. Soc., Dalton Trans., (1974) 233.
- 12 M.A. Bennett, T.W. Matheson, G.B. Robertson, K.A. Smith and P.A. Tucker, Inorg. Chem., 19 (1980) 1014.
- 13 J.W. Hull, Jr and W.L. Gladfelter, Organometallics, 3 (1984) 605.
- 14 H. Werner and R. Werner, J. Organomet. Chem., 174 (1979) C67.